Probabilistic Model Checking Michaelmas Term 2011

Lecture 5
PCTL Model Checking for DTMCs

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Probabilistic model checking

Probabilistic model

System e.g. Markov chain

0.5 +0.4

_} 0.1

®}

. —

rSeysl’j(iarrg_ Probabilistic temporal

mqents logic specification
e.g. PCTL, CSL, LTL

Probabilistic

model checker

e.g. PRISM

/

Q P.oq [Ffail]| =

DP/Probabilistic Model Checking, Michaelmas 2011

1
j 08| s PRISM [21]
g RS % =0.02
26 a A=0.03
5 U F ~ 1= 0.04
3 (Analytical
a 04 ®- L =0.01
e - 1=0.02
4- % =0.03

— Result

v X

Quantitative

Counter-

—) example

~o~o(30

Overview

PCTL model checking for DTMCs

- Computation of probabilities for PCTL formulae
— next

— bounded until

— (unbounded) until

- Solving large linear equation systems
— direct vs. iterative methods
— iterative solution methods

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL

..

PCTL syntax: - Wis true with |
" _probability ~p _
— ¢ ::= true | a | b AP | - | PolWw] (state formulae)
—yp =X | Uk | dUGP (path formulae)
T A
next” i 1w i until
............................ until

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,>}, k e N

Remaining operators can be derived (false, v, —, F, G, ...)
— hence will not be discussed here

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(5,s;,,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E d}=setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— often, just want to know if s, . = &, i.e. if 5, .. € Sat(})
— sometimes, want to check thats E ¢ V s € S, i.e. Sat(p) = S

- Sometimes, focus on quantitative results
— e.g. compute result of P_, [F error]
— e.g. compute result of P_, [F=k error] for 0<k<100

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs

.+ Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_j 45 [—fail U succ]

- For the non-probabilistic operators:
— Sat(true) = S —

— Sat(a) ={seS|aeclL(s)} ‘\

— Sat(—¢) = S \ Sat(d) Pooos[-U -]

/
A
— Sat(d, A §,) = Sat(d,) N Sat(Pp,) / ; / ?

- For the P_, [@] operator:
— need to compute the © ©
probabilities Prob(s, V) fail fail

for all states s € S

— Sat(P.,[w]) ={s €S| Prob(s,p) ~p}
DP/Probabilistic Model Checking, Michaelmas 2011 6

Probability computation

- Three temporal operators to consider:
Next: PNp[X o]

Bounded until: P_ [¢; U=k ¢,]
— adaptation of bounded reachability for DTMCs

Until: P_[&, U &, |
— adaptation of reachability for DTMCs
— graph-based “precomputation” algorithms
— techniques for solving large linear equation systems

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
— Sat(P_,[Xd]) ={s €S| Prob(s,X) ~p}
— need to compute Prob(s, X ¢) forall s € S

- Sum outgoing probabilities for
transitions to ¢-states

— Prob(s, X ¢) = Zy sy P(S,S") O

. Compute vector Prob(X ¢) of w9
probabilities for all states s

— ProbX ¢) =P - ¢
— where ¢ is a 0-1 vector over S with ¢(s) = 1 iff s E ¢
— computation requires a single matrix-vector multiplication

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next - Example

- Model check: P_y 4 [X (=try V succ)]

— Sat (—try Vv succ) = (S \ Sat(try)) U Sat(succ)
= ({50,51,52,53} \ {51} U {s3} = {s¢,5,,53}

— Prob(X (—try Vv succ)) = P - (=try V succ) = ...

0 1 0 0 71[11 [0]
0 0.01 0.01 0.98| |0| [0.99

1t o o o ||1] | 1
o o o 1 |[1] |1

- Results:
— Prob(X (—try v succ)) = [0, 0.99, 1, 1]
— Sat(P.y 4 [X (—=try Vv succ)]) = {s;, S5, S3}

DP/Probabilistic Model Checking, Michaelmas 2011 9

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U=k operator

— Sat(P_ [¢, Uskd, 1) ={s €S| Prob(s, ¢; Usk ;) ~p}
— need to compute Prob(s, ¢, U=k ¢,) forall s € S

- First identify (some) states where probability is trivially 1/0

— Sves = Sat(dp,)
VRN

— Sno = S\ (Sat(,) U Sat(d,))

DP/Probabilistic Model Checking, Michaelmas 2011 10

PCTL bounded until for DTMCs

- Let:

— Syes — Sat(d)z) %
— Sno = S\ (Sat(d,) U Sat(d,)) - \
- And let: %

~ S =5\ (S¥es U S™)

- Compute solution of recursive equations:

if s&SY*®
if s&S™
ifseS’and k=0

]

<k O

Prob(s, ¢, U™ ¢,) = | 0 N
b(s’, &, U™ &) ifseS’and k>0

;P()-Pro

DP/Probabilistic Model Checking, Michaelmas 2011 11

PCTL bounded until for DTMCs

- Simultaneous computation of vector Prob(¢d, U=k ¢,)
— i.e. probabilities Prob(s, ¢, Usk ¢,) foralls € S

Iteratively define in terms of matrices and vectors

— define matrix P’ as follows: P’(s,s’) = P(s,s’) if s € S?,
P'(s,s’) =1 if s € S¥s and s=s’, P’(s,s’) = 0 otherwise

— Prob(¢, U=0 ¢,) = ¢,
— Prob(¢, U=k ¢,) = P’ - Prob(¢; U=k ¢,)
— requires k matrix-vector multiplications

Note that we could express this in terms of matrix powers
— Prob(d, U=k $,) = (P’)k - &b, and compute (P’)% in log,k steps
— but this is actually inefficient: (P’)* is much less sparse than P’

DP/Probabilistic Model Checking, Michaelmas 2011 12

PCTL bounded until - Example

- Model check: P g5 [F<2 succ] = P, 45 [true U=? succ]
— Sat (true) = S = {s(,5,5,,53}, Sat(succ) = {s;}
— Sves = {s;}, Sro=J, §'={sy,s;,5,}, PP =P

— Prob(true U=% succ) = succ = [0, O, O, 1]
0 1 0 0 1 (0]

0
0 0.01 0.01 0.98| [0] |0.98
1 0 0 0 0

Prob(true U'succ) = P'-Prob(true U= succ)

Prob(true U=* succ) = P'-Prob(true U succ)

1 0 0 o0]]|oO
o o o 1|71

— Sat(P. 495 [F=2 succ]) = {s;, s3}

DP/Probabilistic Model Checking, Michaelmas 2011

0 0 0 LI I L I
0 1 0 O 7707 [0.98]
0 0.01 0.01 0.98| |0.98| [0.9898

13

PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U &) forall s € S
- First, identify all states where the probability is T or 0

— Sves = Sat(P., [, U,])

— S"° = Sat(P_,[¢, U ¢,])

- Then solve linear equation system for remaining states

- Running example:

DP/Probabilistic Model Checking, Michaelmas 2011

14

Precomputation

- We refer to the first phase (identifying sets Sves and S"°) as
“precomputation”

— two algorithms: ProbO (for S™) and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— ensures unique solution to linear equation system
. only need ProbO for uniqueness, Prob1 is optional

— reduces the set of states for which probabilities must be
computed numerically

— gives exact results for the states in S¥¢s and S™ (no round-off)

— for model checking of qualitative properties (P_,[-] where p is
0 or 1), no further computation required

DP/Probabilistic Model Checking, Michaelmas 2011 15

Precomputation - ProbO

Prob0 algorithm to compute S" = Sat(P_,[¢, U $,] :
— first compute Sat(P.,[¢, U &b,]) = Sat(E[$, U b,])

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢,-states

— i.e. find all states from which there is a finite path through ¢,-
states to a ¢,—state: simple graph-based computation

— subtract the resulting set from S

Smo = Sat(P_o [7aUb)y 5

Example:

Sat(Byo [~aUDb])

DP/Probabilistic Model Checking, Michaelmas 2011 16

Prob0 algorithm

PROBO(Sat(¢1), Sat(¢ps))

1. R := Sat(¢o)

2. done := false

3. while (done = false)

4. R' =R U{s € Sat(¢p1) | 3s’ € R.P(s,s") > 0}
5. if (R' = R) then done := true

6. R:=FR

7. endwhile

8. return S\R

Note: can be formulated as a least fixed point computation
— also well suited to computation with binary decision diagrams

DP/Probabilistic Model Checking, Michaelmas 2011 17

Precomputation - Prob]

Prob1 algorithm to compute S¥es = Sat(P_., [¢, U ¢,]):
— first compute Sat(P_, [¢, U &,]), reusing Sn°

— this is equivalent to the set of states which have a non-zero
probability of reaching S"°, passing only through ¢,-states

— again, this is a simple graph-based computation
— subtract the resulting set from S

SnOSﬁtﬂaE PLﬂE[#hw]b])0 3

Example:

Qyes —

O7 Sat(P_, [-aUb])

DP/Probabilistic Model Checking, Michaelmas 2011 18

Prob1 algorithm

PrROB1(Sat(¢1), Sat(gpa), S™)

R := 5™

done := false

while (done = false)
R = R U{s € (Sat(¢1)\Sat(p2)) | 38’ € R.P(s,s") > 0}
if (R = R) then done := true
R:=FR

endwhile

return S\ R

= e

© N o o

DP/Probabilistic Model Checking, Michaelmas 2011

19

Prob 1 explanation

DP/Probabilistic Model Checking, Michaelmas 2011

20

PCTL until - linear equations

- Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations

— essentially the same as for probabilistic reachability

1 if seSY*
Prob(s, ¢, Ud,) = 0 if s&Sm
EP(s,s')- Prob(s', ¢, U ¢,) otherwise
[s'SS

- Can also be reduced to a system in |S?| unknowns instead
of |S| where S” =S\ (Sves U Sn9)

DP/Probabilistic Model Checking, Michaelmas 2011 21

PCTL until - linear equations

Example: P.yg[-a Ub] Sno —
Let x, = Prob(s;, —a U b) Sat(P_,[-aUb])

Syes —

7 sat(P., [~aUb)

X; =x3=0 —
X4 = Xg = 1 0.1 1
X; = 0.1%x,+0.1x3+0.3x5+0.5x, = 8/9

Xo = 0.1%,+0.9x, = 0.8

Prob(-a Ub) =x=10.8, 0, 89,0, 1, 1]

Sat(P.og["aUDb]) =1{5s,,54,5:}

DP/Probabilistic Model Checking, Michaelmas 2011 22

PCTL Until - Example 2

. Example: P_,: [G=b] Sne = Sat(P_, [Fb])

- Prob(s,, G—b)
= 1 - Prob(s;, =(G—b))
= 1 - Prob(s;, F b)

Qyes —

Sat(P.; [Fb])
- Let x; = Prob(s;, F b)

X3 =0 and x, = Xg = 1
X, = 0.1x,+0.1x53+0.3x5;+0.5x, = 8/9

X; = 0.6X3+0.4%x, = 0.4X%,

Xo = 0.1%,+0.9x, = 5/6 and x;=1/3
Prob(G—-b) =1-x=1[1/6,2/3,1/9,1,0,0]
Sat(P.os [G—=b]) ={s,,55}

DP/Probabilistic Model Checking, Michaelmas 2011 23

Linear equation systems

Solution of large (sparse) linear equation systems
— size of system (number of variables) typically O(|S|)
— state space S gets very large in practice

- Two main classes of solution methods:

— direct methods - compute exact solutions in fixed number of
steps, e.g. Gaussian elimination, L/U decomposition

— iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
— the latter are preferred in practice due to scalability

General form: A-x = b 1S|—1

— indexed over integers, Z A(i,7)-z(7) = bli)
—i.e.assumeS={0,1,.,IS|-1} "

DP/Probabilistic Model Checking, Michaelmas 2011 24

Ilterative solution methods

Start with an initial estimate for the vector x, say x©
Compute successive (increasingly accurate) approximations
— approximation (solution vector) at kt" iteration denoted x®
— computation of x® uses values of xk-1
Terminate when solution vector has converged sufficiently
Several possibilities for convergence criteria, e.g.:
— maximum absolute difference

max; |2 (i) — 1’("’_1)(72)‘ <

(n

A A

— maximum relative difference

X l X l
max; (|_ () — ()| > < £

2™ (@),

DP/Probabilistic Model Checking, Michaelmas 2011 25

Jacobi method

- Based on fact that:

1S]—1

> A(ig)-z(i) = bi)
- can be rearranged as:

x(1) (b(z Z A(i,7)

- yielding this update scheme:

: For probabilistic :
: model checking,
: A(i,i) is always
: non-zero

2®(i) = (Q(z‘)—ZAci.J)-_r“‘—“cj)) JA(i,1)
j#i

DP/Probabilistic Model Checking, Michaelmas 2011

26

Gauss-Seidel

- The update scheme for Jacobi:
2R (7)) = (Q(z Z A(i,) 2 1)(])) AT, 1)

can be improved by using the most up-to-date values of
x0 that are available

- This is the Gauss-Seidel method:

™) = (b z)—Z Ai,g) - 2™y Z Ai,j) - z*~ “u)) JA(i, 1)

DP/Probabilistic Model Checking, Michaelmas 2011 27

Over-relaxation

Over-relaxation:
— compute new values with existing schemes (e.g. Jacobi)
— but use weighted average with previous vector

Example: lacobi + over-relaxation

2M(@) = (1—w)-z% V()
+ w- (b)) =D A 5) - 2% V(G)) AL)

- where w € (0,2) is a parameter to the algorithm

DP/Probabilistic Model Checking, Michaelmas 2011 28

Comparison

Gauss-Seidel typically outperforms Jacobi
— i.e. faster convergence
— also: only need to store a single solution vector

Both Gauss-Seidel and Jacobi usually outperform the Power
method (see least fixed point method from Lecture 2)

However Power method has guaranteed convergence
— Jacobi and Gauss-Seidel do not

Over-relaxation methods may converge faster
— for well chosen values of w
— need to rely on heuristics for this selection

DP/Probabilistic Model Checking, Michaelmas 2011 29

Model checking complexity

Model checking of DTMC (S,s,,;;,P,L) against PCTL formula ¢
complexity is linear in |®| and polynomial in |S|

- Size |®| of @ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators

— model checking is performed for each operator

- Worst-case operatoris P_, [&, U @,]
— main task: solution of linear equation system of size |S|

— cahn be solved with Gaussian elimination: cubic in |S|
— and also precomputation algorithms (max |S| steps)

- Strictly speaking, U=k could be worse than U for large k
— but in practice k is usually small

DP/Probabilistic Model Checking, Michaelmas 2011 30

Summing up...

Model checking a PCTL formula ¢ on a DTMC
— i.e. determine set Sat(¢)
— recursive: bottom-up traversal of parse tree of ¢

- Atomic propositions and logical connectives: trivial

Key part: computing probabilities for P_ [...] formulae
— X ® : one matrix-vector multiplications
— @&, U=k @, : k matrix-vector multiplications

— &, U &, : graph-based precomputation algorithms + solution
of linear equation system in at most |S| variables

Iterative methods for solving large linear equation systems

DP/Probabilistic Model Checking, Michaelmas 2011 31

