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Overview 

•  PCTL model checking for DTMCs 

•  Computation of probabilities for PCTL formulae 
−  next 
−  bounded until 
−  (unbounded) until 

•  Solving large linear equation systems 
−  direct vs. iterative methods 
−  iterative solution methods 
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PCTL 
•  PCTL syntax: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulae) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulae) 

−  where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  Remaining operators can be derived (false, ∨, →, F, G, …) 
−  hence will not be discussed here 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 
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PCTL model checking for DTMCs 
•  Algorithm for PCTL model checking [CY88,HJ94,CY95] 

−  inputs:  DTMC D=(S,sinit,P,L),  PCTL formula φ 
−  output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ 

•  What does it mean for a DTMC D to satisfy a formula φ? 
−  often, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ) 
−  sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S 

•  Sometimes, focus on quantitative results 
−  e.g. compute result of P=? [ F error ] 
−  e.g. compute result of P=? [ F≤k error ] for 0≤k≤100 
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PCTL model checking for DTMCs 
•  Basic algorithm proceeds by induction on parse tree of φ 

−  example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ] 

•  For the non-probabilistic operators: 
−  Sat(true) = S 
−  Sat(a) = { s ∈ S | a ∈ L(s) } 
−  Sat(¬φ) = S \ Sat(φ) 
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2) 

•  For the P~p [ ψ ] operator:  
−  need to compute the  

probabilities Prob(s, ψ) 
for all states s ∈ S 

−  Sat(P~p [ ψ ]) = { s ∈ S | Prob(s, ψ) ~ p } 

∧ 

¬ 

→ 

P>0.95 [ · U · ] 

¬ 

fail fail 

succ try 
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Probability computation 
•  Three temporal operators to consider: 

•  Next: P~p[ X φ ] 

•  Bounded until: P~p[ φ1 U≤k φ2 ] 
−  adaptation of bounded reachability for DTMCs 

•  Until: P~p[ φ1 U φ2 ] 
−  adaptation of reachability for DTMCs 
−  graph-based “precomputation” algorithms 
−  techniques for solving large linear equation systems 
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PCTL next for DTMCs 
•  Computation of probabilities for PCTL next operator 

−  Sat(P~p[ X φ ]) = { s ∈ S | Prob(s, X φ) ~ p } 
−  need to compute Prob(s, X φ) for all s ∈ S 

•  Sum outgoing probabilities for  
transitions to φ-states 
−  Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’) 

•  Compute vector Prob(X φ) of 
probabilities for all states s 
−  Prob(X φ) = P · φ 
−  where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ 
−  computation requires a single matrix-vector multiplication 

s 

φ 
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PCTL next - Example 
•  Model check: P≥0.9 [ X (¬try ∨ succ) ] 

−  Sat (¬try ∨ succ)  = (S \ Sat(try)) ∪ Sat(succ)  
= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3} 

−  Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = … 

•  Results: 
−  Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1] 
−  Sat(P≥0.9 [ X (¬try ∨ succ) ]) = {s1, s2, s3} 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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PCTL bounded until for DTMCs 
•  Computation of probabilities for PCTL U≤k operator 

−  Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p } 
−  need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S 

•  First identify (some) states where probability is trivially 1/0 
−  Syes = Sat(φ2) 
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2)) 

Sat(φ2) 

Sat(φ1) 
S 
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PCTL bounded until for DTMCs 
•  Let: 

−  Syes = Sat(φ2) 
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2)) 

•  And let: 
−  S? = S \ (Syes ∪ Sno) 

•  Compute solution of recursive equations: 

Sat(φ2) 

Sat(φ1) S 
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PCTL bounded until for DTMCs 
•  Simultaneous computation of vector Prob(φ1 U≤k φ2) 

−  i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S 

•  Iteratively define in terms of matrices and vectors 
−  define matrix P’ as follows: P’(s,s’) = P(s,s’) if s ∈ S?,  

P’(s,s’) = 1 if s ∈ Syes and s=s’,  P’(s,s’) = 0 otherwise 
−  Prob(φ1 U≤0 φ2) = φ2 
−  Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2) 
−  requires k matrix-vector multiplications 

•  Note that we could express this in terms of matrix powers 
−  Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps 
−  but this is actually inefficient: (P’)k is much less sparse than P’ 
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PCTL bounded until - Example 
•  Model check: P>0.98 [ F≤2 succ ] ≡ P>0.98 [ true U≤2 succ ] 

−  Sat (true) = S = {s0,s1,s2,s3},  Sat(succ) = {s3} 
−  Syes = {s3},  Sno = ∅,  S? = {s0,s1,s2},  P’ = P 
−  Prob(true U≤0 succ) = succ = [0, 0, 0, 1] 

−  Sat(P>0.98 [ F≤2 succ ]) = {s1, s3} 
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PCTL until for DTMCs 
•  Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S 
•  First, identify all states where the probability is 1 or 0 

−  Syes = Sat(P≥1 [ φ1 U φ2 ]) 
−  Sno = Sat(P≤0 [ φ1 U φ2 ]) 

•  Then solve linear equation system for remaining states 

•  Running example: 

P>0.8 [¬a U b ] 0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
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{b} 

0.1 

s0 

s1 s3 

s2 s4 

s5 
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Precomputation 
•  We refer to the first phase (identifying sets Syes and Sno) as 

“precomputation” 
−  two algorithms: Prob0 (for Sno) and Prob1 (for Syes) 
−  algorithms work on underlying graph (probabilities irrelevant) 

•  Important for several reasons 
−  ensures unique solution to linear equation system 

•  only need Prob0 for uniqueness, Prob1 is optional 
−  reduces the set of states for which probabilities must be 

computed numerically 
−  gives exact results for the states in Syes and Sno (no round-off) 
−  for model checking of qualitative properties (P~p[·] where p is 

0 or 1), no further computation required 
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Sno = Sat(P≤0 [¬a U b ]) 

0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.5 0.9 
0.1 

Sat(P>0 [¬a U b ]) Sat(b) 

Precomputation - Prob0 
•  Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) : 

−  first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ]) 
−  i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states 
−  i.e. find all states from which there is a finite path through φ1-

states to a φ2-state: simple graph-based computation 
−  subtract the resulting set from S 

Example: 
P>0.8 [¬a U b ] 

1 

a 

b s0 

s1 s3 

s2 s4 

s5 
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Prob0 algorithm 

•  Note: can be formulated as a least fixed point computation 
−  also well suited to computation with binary decision diagrams 
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Syes = 
Sat(P≥1 [¬a U b ]) 

Sat(P<1 [¬a U b ]) Sno = Sat(P≤0 [¬a U b ]) 

Precomputation - Prob1 
•  Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) : 

−  first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno 

−  this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states 

−  again, this is a simple graph-based computation 
−  subtract the resulting set from S 

Example: 
P>0.8 [¬a U b ] 

1 

a 

b 
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Prob1 algorithm 
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Prob 1 explanation 
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PCTL until - linear equations 
•  Probabilities Prob(s, φ1 U φ2) can now be obtained as the 

unique solution of the following set of linear equations 
−  essentially the same as for probabilistic reachability 

•  Can also be reduced to a system in |S?| unknowns instead 
of |S| where S? = S \ (Syes ∪ Sno) 

  

€ 

Prob(s, φ1 U φ2)  =   
1
0

P(s,s' )⋅ Prob(s',  φ1 U φ2)
s'∈S
∑

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

if s ∈ Syes

if s ∈ Sno

otherwise



22 DP/Probabilistic Model Checking, Michaelmas 2011 

PCTL until - linear equations 
•  Example: P>0.8 [¬a U b ] 
•  Let xi = Prob(si, ¬a U b)  

x1 = x3 = 0 
x4 = x5 = 1 
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9 

x0 = 0.1x1+0.9x2  =  0.8 
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1] 
Sat(P>0.8 [ ¬a U b ]) = { s2,s4,s5 } 

Sno = 
Sat(P≤0 [¬a U b ]) 

a 

b 
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PCTL Until – Example 2 
•  Example: P>0.5 [ G¬b ] 
•  Prob(si, G¬b)  

= 1 - Prob(si, ¬(G¬b))  
= 1 - Prob(si, F b)  

•  Let xi = Prob(si, F b)  

x3 = 0 and x4 = x5 = 1 
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9 

x1 = 0.6x3+0.4x0 = 0.4x0 
x0 = 0.1x1+0.9x2  = 5/6 and x1= 1/3 
Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0 ] 
Sat(P>0.5 [ G¬b ]) = { s1,s3 } 

Sno = Sat(P≤0 [ F b ]) 

Syes = 
Sat(P≥1 [ F b ]) 

a 

b 
0.4 0.1 

0.6 

1 0.3 

0.7 0.1 
0.3 

0.9 
1 0.1 

0.5 
s0 

s1 s3 

s2 s4 

s5 



24 DP/Probabilistic Model Checking, Michaelmas 2011 

Linear equation systems 
•  Solution of large (sparse) linear equation systems 

−  size of system (number of variables) typically O(|S|) 
−  state space S gets very large in practice 

•  Two main classes of solution methods: 
−  direct methods - compute exact solutions in fixed number of 

steps, e.g. Gaussian elimination, L/U decomposition 
−  iterative methods, e.g. Power, Jacobi, Gauss-Seidel, … 
−  the latter are preferred in practice due to scalability 

•  General form: A·x = b 
−  indexed over integers, 
−  i.e. assume S = { 0,1,…,|S|-1 } 
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Iterative solution methods 
•  Start with an initial estimate for the vector x, say x(0) 

•  Compute successive (increasingly accurate) approximations 
−  approximation (solution vector) at kth iteration denoted x(k) 

−  computation of x(k) uses values of x(k-1) 

•  Terminate when solution vector has converged sufficiently 
•  Several possibilities for convergence criteria, e.g.: 

−  maximum absolute difference 

−  maximum relative difference 
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Jacobi method 
•  Based on fact that: 

•  can be rearranged as: 

•  yielding this update scheme: 

For probabilistic 
model checking, 
A(i,i) is always 

non-zero 
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Gauss-Seidel 
•  The update scheme for Jacobi: 

•  can be improved by using the most up-to-date values of 
x(j) that are available 

•  This is the Gauss-Seidel method: 
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Over-relaxation 
•  Over-relaxation: 

−  compute new values with existing schemes (e.g. Jacobi) 
−  but use weighted average with previous vector 

•  Example: Jacobi + over-relaxation 

•  where ω ∈ (0,2) is a parameter to the algorithm 
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Comparison 
•  Gauss-Seidel typically outperforms Jacobi 

−  i.e. faster convergence 
−  also: only need to store a single solution vector  

•  Both Gauss-Seidel and Jacobi usually outperform the Power 
method (see least fixed point method from Lecture 2)  

•  However Power method has guaranteed convergence 
−  Jacobi and Gauss-Seidel do not 

•  Over-relaxation methods may converge faster 
−  for well chosen values of ω 
−  need to rely on heuristics for this selection 
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Model checking complexity 
•  Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ 

complexity is linear in |Φ| and polynomial in |S| 

•  Size |Φ| of Φ is defined as number of logical connectives 
and temporal operators plus sizes of temporal operators 
−  model checking is performed for each operator  

•  Worst-case operator is P~p [ Φ1 U Φ2 ] 
−  main task: solution of linear equation system of size |S| 
−  can be solved with Gaussian elimination: cubic in |S| 
−  and also precomputation algorithms (max |S| steps) 

•  Strictly speaking, U≤k could be worse than U for large k 
−  but in practice k is usually small 
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Summing up… 
•  Model checking a PCTL formula φ on a DTMC 

−  i.e. determine set Sat(φ) 
−  recursive: bottom-up traversal of parse tree of φ 

•  Atomic propositions and logical connectives: trivial 

•  Key part: computing probabilities for P~p [ … ] formulae 
−  X Φ : one matrix-vector multiplications 
−  Φ1 U≤k Φ2 : k matrix-vector multiplications 
−  Φ1 U Φ2 : graph-based precomputation algorithms + solution 

of linear equation system in at most |S| variables 

•  Iterative methods for solving large linear equation systems 


