
Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal  
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

2 DP/Probabilistic Model Checking, Michaelmas 2011

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  PCTL model checking for DTMCs

•  Computation of probabilities for PCTL formulae
−  next
−  bounded until
−  (unbounded) until

•  Solving large linear equation systems
−  direct vs. iterative methods
−  iterative solution methods

4 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL
•  PCTL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulae)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulae)

−  where a is an atomic proposition, p ∈ [0,1] is a probability
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  Remaining operators can be derived (false, ∨, →, F, G, …)
−  hence will not be discussed here

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

5 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs
•  Algorithm for PCTL model checking [CY88,HJ94,CY95]

−  inputs: DTMC D=(S,sinit,P,L), PCTL formula φ
−  output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

•  What does it mean for a DTMC D to satisfy a formula φ?
−  often, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)
−  sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

•  Sometimes, focus on quantitative results
−  e.g. compute result of P=? [F error]
−  e.g. compute result of P=? [F≤k error] for 0≤k≤100

6 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL model checking for DTMCs
•  Basic algorithm proceeds by induction on parse tree of φ

−  example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

•  For the non-probabilistic operators:
−  Sat(true) = S
−  Sat(a) = { s ∈ S | a ∈ L(s) }
−  Sat(¬φ) = S \ Sat(φ)
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

•  For the P~p [ψ] operator:
−  need to compute the  

probabilities Prob(s, ψ) 
for all states s ∈ S

−  Sat(P~p [ψ]) = { s ∈ S | Prob(s, ψ) ~ p }

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succ try

7 DP/Probabilistic Model Checking, Michaelmas 2011

Probability computation
•  Three temporal operators to consider:

•  Next: P~p[X φ]

•  Bounded until: P~p[φ1 U≤k φ2]
−  adaptation of bounded reachability for DTMCs

•  Until: P~p[φ1 U φ2]
−  adaptation of reachability for DTMCs
−  graph-based “precomputation” algorithms
−  techniques for solving large linear equation systems

8 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next for DTMCs
•  Computation of probabilities for PCTL next operator

−  Sat(P~p[X φ]) = { s ∈ S | Prob(s, X φ) ~ p }
−  need to compute Prob(s, X φ) for all s ∈ S

•  Sum outgoing probabilities for  
transitions to φ-states
−  Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

•  Compute vector Prob(X φ) of 
probabilities for all states s
−  Prob(X φ) = P · φ
−  where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ
−  computation requires a single matrix-vector multiplication

s

φ

9 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL next - Example
•  Model check: P≥0.9 [X (¬try ∨ succ)]

−  Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)  
= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

−  Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

•  Results:
−  Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]
−  Sat(P≥0.9 [X (¬try ∨ succ)]) = {s1, s2, s3}

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

10 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for DTMCs
•  Computation of probabilities for PCTL U≤k operator

−  Sat(P~p[φ1 U≤k φ2]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p }
−  need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S 

•  First identify (some) states where probability is trivially 1/0
−  Syes = Sat(φ2)
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2))

Sat(φ2)

Sat(φ1)
S

11 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for DTMCs
•  Let:

−  Syes = Sat(φ2)
−  Sno = S \ (Sat(φ1) ∪ Sat(φ2))

•  And let:
−  S? = S \ (Syes ∪ Sno)

•  Compute solution of recursive equations:

Sat(φ2)

Sat(φ1) S

12 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until for DTMCs
•  Simultaneous computation of vector Prob(φ1 U≤k φ2)

−  i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S

•  Iteratively define in terms of matrices and vectors
−  define matrix P’ as follows: P’(s,s’) = P(s,s’) if s ∈ S?,  

P’(s,s’) = 1 if s ∈ Syes and s=s’, P’(s,s’) = 0 otherwise
−  Prob(φ1 U≤0 φ2) = φ2
−  Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2)
−  requires k matrix-vector multiplications

•  Note that we could express this in terms of matrix powers
−  Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps
−  but this is actually inefficient: (P’)k is much less sparse than P’

13 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL bounded until - Example
•  Model check: P>0.98 [F≤2 succ] ≡ P>0.98 [true U≤2 succ]

−  Sat (true) = S = {s0,s1,s2,s3}, Sat(succ) = {s3}
−  Syes = {s3}, Sno = ∅, S? = {s0,s1,s2}, P’ = P
−  Prob(true U≤0 succ) = succ = [0, 0, 0, 1]

−  Sat(P>0.98 [F≤2 succ]) = {s1, s3}

14 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until for DTMCs
•  Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S
•  First, identify all states where the probability is 1 or 0

−  Syes = Sat(P≥1 [φ1 U φ2])
−  Sno = Sat(P≤0 [φ1 U φ2])

•  Then solve linear equation system for remaining states

•  Running example:

P>0.8 [¬a U b] 0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.5 0.9
1

{a}

{b}

0.1

s0

s1 s3

s2 s4

s5

15 DP/Probabilistic Model Checking, Michaelmas 2011

Precomputation
•  We refer to the first phase (identifying sets Syes and Sno) as

“precomputation”
−  two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
−  algorithms work on underlying graph (probabilities irrelevant)

•  Important for several reasons
−  ensures unique solution to linear equation system

•  only need Prob0 for uniqueness, Prob1 is optional
−  reduces the set of states for which probabilities must be

computed numerically
−  gives exact results for the states in Syes and Sno (no round-off)
−  for model checking of qualitative properties (P~p[·] where p is

0 or 1), no further computation required

16 DP/Probabilistic Model Checking, Michaelmas 2011

Sno = Sat(P≤0 [¬a U b])

0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.5 0.9
0.1

Sat(P>0 [¬a U b]) Sat(b)

Precomputation - Prob0
•  Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :

−  first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
−  i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
−  i.e. find all states from which there is a finite path through φ1-

states to a φ2-state: simple graph-based computation
−  subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

b s0

s1 s3

s2 s4

s5

17 DP/Probabilistic Model Checking, Michaelmas 2011

Prob0 algorithm

•  Note: can be formulated as a least fixed point computation
−  also well suited to computation with binary decision diagrams

18 DP/Probabilistic Model Checking, Michaelmas 2011

Syes =
Sat(P≥1 [¬a U b])

Sat(P<1 [¬a U b]) Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob1
•  Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :

−  first compute Sat(P<1 [φ1 U φ2]), reusing Sno

−  this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

−  again, this is a simple graph-based computation
−  subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
0.1

0.5
s0

s1 s3

s2 s4

s5

19 DP/Probabilistic Model Checking, Michaelmas 2011

Prob1 algorithm

20 DP/Probabilistic Model Checking, Michaelmas 2011

Prob 1 explanation

21 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - linear equations
•  Probabilities Prob(s, φ1 U φ2) can now be obtained as the

unique solution of the following set of linear equations
−  essentially the same as for probabilistic reachability

•  Can also be reduced to a system in |S?| unknowns instead
of |S| where S? = S \ (Syes ∪ Sno)

€

Prob(s, φ1 U φ2) =
1
0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S
∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

if s ∈ Syes

if s ∈ Sno

otherwise

22 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL until - linear equations
•  Example: P>0.8 [¬a U b]
•  Let xi = Prob(si, ¬a U b)

x1 = x3 = 0
x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x0 = 0.1x1+0.9x2 = 0.8
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]
Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =
Sat(P≤0 [¬a U b])

a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

s0

s1 s3

s2 s4

s5

23 DP/Probabilistic Model Checking, Michaelmas 2011

PCTL Until – Example 2
•  Example: P>0.5 [G¬b]
•  Prob(si, G¬b)  

= 1 - Prob(si, ¬(G¬b))  
= 1 - Prob(si, F b)  

•  Let xi = Prob(si, F b)  

x3 = 0 and x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x1 = 0.6x3+0.4x0 = 0.4x0
x0 = 0.1x1+0.9x2 = 5/6 and x1= 1/3
Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0]
Sat(P>0.5 [G¬b]) = { s1,s3 }

Sno = Sat(P≤0 [F b])

Syes =
Sat(P≥1 [F b])

a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1 0.1

0.5
s0

s1 s3

s2 s4

s5

24 DP/Probabilistic Model Checking, Michaelmas 2011

Linear equation systems
•  Solution of large (sparse) linear equation systems

−  size of system (number of variables) typically O(|S|)
−  state space S gets very large in practice

•  Two main classes of solution methods:
−  direct methods - compute exact solutions in fixed number of

steps, e.g. Gaussian elimination, L/U decomposition
−  iterative methods, e.g. Power, Jacobi, Gauss-Seidel, …
−  the latter are preferred in practice due to scalability

•  General form: A·x = b
−  indexed over integers,
−  i.e. assume S = { 0,1,…,|S|-1 }

25 DP/Probabilistic Model Checking, Michaelmas 2011

Iterative solution methods
•  Start with an initial estimate for the vector x, say x(0)

•  Compute successive (increasingly accurate) approximations
−  approximation (solution vector) at kth iteration denoted x(k)

−  computation of x(k) uses values of x(k-1)

•  Terminate when solution vector has converged sufficiently
•  Several possibilities for convergence criteria, e.g.:

−  maximum absolute difference

−  maximum relative difference

26 DP/Probabilistic Model Checking, Michaelmas 2011

Jacobi method
•  Based on fact that:

•  can be rearranged as:

•  yielding this update scheme:

For probabilistic
model checking,
A(i,i) is always

non-zero

27 DP/Probabilistic Model Checking, Michaelmas 2011

Gauss-Seidel
•  The update scheme for Jacobi:

•  can be improved by using the most up-to-date values of 
x(j) that are available

•  This is the Gauss-Seidel method:

28 DP/Probabilistic Model Checking, Michaelmas 2011

Over-relaxation
•  Over-relaxation:

−  compute new values with existing schemes (e.g. Jacobi)
−  but use weighted average with previous vector

•  Example: Jacobi + over-relaxation

•  where ω ∈ (0,2) is a parameter to the algorithm

29 DP/Probabilistic Model Checking, Michaelmas 2011

Comparison
•  Gauss-Seidel typically outperforms Jacobi

−  i.e. faster convergence
−  also: only need to store a single solution vector  

•  Both Gauss-Seidel and Jacobi usually outperform the Power
method (see least fixed point method from Lecture 2)  

•  However Power method has guaranteed convergence
−  Jacobi and Gauss-Seidel do not 

•  Over-relaxation methods may converge faster
−  for well chosen values of ω
−  need to rely on heuristics for this selection

30 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking complexity
•  Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ

complexity is linear in |Φ| and polynomial in |S| 

•  Size |Φ| of Φ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators
−  model checking is performed for each operator  

•  Worst-case operator is P~p [Φ1 U Φ2]
−  main task: solution of linear equation system of size |S|
−  can be solved with Gaussian elimination: cubic in |S|
−  and also precomputation algorithms (max |S| steps)

•  Strictly speaking, U≤k could be worse than U for large k
−  but in practice k is usually small

31 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Model checking a PCTL formula φ on a DTMC

−  i.e. determine set Sat(φ)
−  recursive: bottom-up traversal of parse tree of φ

•  Atomic propositions and logical connectives: trivial

•  Key part: computing probabilities for P~p […] formulae
−  X Φ : one matrix-vector multiplications
−  Φ1 U≤k Φ2 : k matrix-vector multiplications
−  Φ1 U Φ2 : graph-based precomputation algorithms + solution

of linear equation system in at most |S| variables

•  Iterative methods for solving large linear equation systems

